

Cathode Surface-Induced, Solvation-Mediated, Micrometer-Sized Li₂O₂ Cycling for Li–O₂ Batteries

Ji-Jing Xu, Zhi-Wen Chang, Ying Wang, Da-Peng Liu, Yu Zhang,* and Xin-Bo Zhang

Rechargeable aprotic lithium–oxygen (Li–O₂) batteries have attracted intensive interest because of their high theoretical energy density (3600 Wh kg⁻¹), and they significantly outperform state-of-the-art Li-ion batteries and are a promising alternative to gasoline.^[1–6] In a typical Li–O₂ battery, the electrochemical reaction pathway is $2\text{Li}^+ + 2\text{e}^- + \text{O}_2 \rightleftharpoons \text{Li}_2\text{O}_2$, with the forward direction describing the cell discharge and the reverse direction describing charging.^[7–10] Although the reaction is apparently simple, carrying out these processes rapidly, efficiently and sustainably for many cycles is a formidable challenge and is closely associated with parasitic chemistry/ electrochemistry^[11–14] and the specific growth and decomposition processes of the Li₂O₂ discharge products during battery cycling.^[15–17]

Two different models for the Li2O2 growth mechanism have been proposed-the surface-adsorption pathway and the solvation-mediated pathway-and both are determined by the electron-donating propensity of the electrolyte solvent and the surface-binding energy on the cathode.^[18-22] During battery discharge, O₂ undergoes a one-electron reduction to O₂-. In the surface-adsorption pathway, the superoxide species $(O_2^{-*} \text{ and/or } \text{LiO}_2^{*}, \text{ where } * \text{ indicates surface-adsorbed } O_2^{-}$ and LiO₂) adsorb on the cathode surface and undergo a second reduction, forming Li_2O_2 thin films (thickness < 10 nm) on the cathode surface,^[18,19] severely passivating the cathode and limiting the maximum battery discharge capacity. In contrast, in the solvation-mediated pathway, the dissolved LiO₂(sol) and/or O₂⁻(sol) undergo disproportionation, ultimately forming large Li₂O₂ toroidal crystals of variable size (typically less than 2 $\mu m).^{[20-22]}$ Fortunately, the formation of large $\rm Li_2O_2$ toroids significantly improves the battery's capacity, rechargeability and cathode passivation.^[23] To produce these toroidal crystals, several important authors, including Bruce,^[24] Luntz,^[23] Nazar,^[25] and Shao-Horn,^[26] have recently reported that the

Dr. J.-J. Xu, Z.-W. Chang, Dr. Y. Wang, Prof. X.-B. Zhang State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022, P. R. China Z.-W. Chang University of Chinese Academy of Sciences Beijing 100049, P. R. China Dr. D.-P. Liu, Prof. Y. Zhang Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry and Environment Beijang 100191, P. R. China

DOI: 10.1002/adma.201603454

E-mail: jade@buaa.edu.cn

solvation-mediated pathway for Li2O2 growth can be significantly enhanced by employing high-donor-number solvents (electrolytes) with trace amounts of electrolyte additives (such as H₂O and CH₃OH) and/or a low current density. In comparison, the Li₂O₂ decomposition pathways during the recharge process have been much less studied. This pathway is generally understood to be initiated by a one-electron transfer process, forming surface-bound LiO2* species.^[27,28] If the LiO2* undergoes a second oxidation on the cathode or Li2O2 surface to generate O₂, which is considered to be the most plausible route, the overall reactions are more commonly believed to consist of two-electron processes.^[29] If the LiO₂(sol) diffuses in the solution and then is disproportionated to O2, the overall decomposition would be a single-electron process expected to feature low overpotentials.^[30,31] However, discussion of the enhanced solvation-mediated formation and decomposition process of Li₂O₂ by suppressing the cathode surface binding energy and its effect on battery performance have been rarely discussed. More importantly, most research efforts have been limited to exploring the Li2O2 growth mechanism in the first discharge/ charge cycle only. Additionally, our understanding of the evolution mechanism of Li₂O₂ morphology and crystallinity over long-term cycling, which is vital for the development of longlife Li–O₂ batteries, is very limited.

Here, we demonstrate enhanced solvation-mediated growth/ decomposition of the discharge product Li₂O₂ in Li-O₂ cells using a highly stable cathode based on herringbone-patterned carbon nanotubes (CNTs) coated with ruthenium(IV) oxide (RuO₂) nanoparticles (NPs). The RuO₂/CNT cathode exhibits a suppressed surface-binding energy toward the superoxide species (LiO₂ and O_2^{-}), thereby promoting the formation of LiO_2 , with O_2^- readily diffusing to the electrolyte and rapidly forming/decomposing the micrometer-sized, flower-like Li₂O₂ assemblies reported here for the first time. We also reveal that this efficient formation/decomposition mechanism is sustainable over many cycles because of the minimal accumulation of side products on the RuO2/CNT cathode and the presence of CO₂ in the electrolyte resulting from parasitic electrochemistry/ chemistry during cycling. These factors endow the Li-O₂ battery with an ultrahigh specific capacity, relatively low overpotentials, and a long cycle life.

Figure 1a shows the synthesis strategy for the RuO₂/CNT cathode. We used a simple hydrothermal treatment to coat the herringbone CNT surface with ruthenium (IV) oxide (RuO₂) NPs, which deposit on the CNT defect sites to both passivate the defects on the CNT surface and enhance the electrocatalytic activity of the RuO₂/CNT composite. The transmission electron microscopy (TEM) and elemental mapping images indicate that the RuO₂ NPs only partially covered the CNT surfaces and were highly dispersed and uniform (Figure 1b,c

9620 wileyonlinelibrary.com

www.MaterialsViews.com

Figure 1. a) Schematic representations of the design and preparation of the RuO_2/CNT . b) TEM image of the pristine CNT. c) TEM image of the RuO_2/CNT . The surface of the CNT (light areas) is coated with well-dispersed RuO_2 islands with diameters of 1.5 nm (dark areas). d) Ru 3p XPS spectra of the RuO_2/CNT . e) C1s XPS spectra of the RuO_2/CNT . f) O1s XPS spectra of the RuO_2/CNT . The RuO_2 significantly decreases the number of defects on the CNT, as evidenced by the disappearance of peaks attributed to oxygen-containing groups (C=O, C=O, and O=C=O). g) The pore-size distributions of the pristine CNT and RuO_2/CNT . The tiny pores (3 nm) with ample oxygen-containing groups on the pristine CNT surface disappear on the RuO_2/CNT surface.

and Figure S1, Supporting Information). The average size of the RuO₂ NPs is ≈1.5 nm. Thermal gravimetric analysis (TGA) confirms a RuO2 mass percent of 47% in the RuO2/CNTs and the absence of both organic residues and water (Figure S2, Supporting Information). The partially covered CNT surface is characterized by islands of RuO2 deposited on defect sites, leaving some of the CNT surface exposed. The CNT defect sites include, for example, C-O, C=O, and O-C=O groups, which have been found to be reactive toward the oxidation of ruthenium precursors^[32] X-ray photoelectron spectroscopy (XPS) was used to investigate the nature of the CNTs and RuO2/ CNT surface. The XPS peaks centered at 464.0 and 485.2 eV can be assigned to RuO₂ (Figure 1d). The C1s and O1s XPS spectra shown in Figure 1e,f indicate that the RuO₂ coating significantly decreases the amount of defects on the CNT, as evidenced by the disappearance of oxygen-containing groups' (C-O, C=O, and O-C=O) peaks. This result exactly agrees with the decreased I_D/I_G ratio resulting from the deposition of

RuO₂ NPs (Figure S3, Supporting Information) and is further supported by pore-size distribution analyses of the CNTs and RuO₂/CNTs, which indicate fewer tiny holes (3 nm) with ample oxygen-containing groups on the RuO₂/CNT surface (Figure 1g). This RuO₂ coating prevents the decomposition of both the CNT surface and the ether (tetraglyme) solvent, which is a problem for Li–O₂ cells.^[20,27,28] The electrochemical performance of RuO₂/CNT cathodes was then examined in Li–O₂ cells and compared to that of pristine CNT cathodes (i.e., RuO₂free cathodes).

The role of the RuO₂/CNT cathode is demonstrated by the morphological and structural features of Li₂O₂ after discharge and recharge, after excluding the possible effects of the cathode morphology (Figure S4, Supporting Information). To shed light on the detailed Li₂O₂ growth process, field emission scanning electron microscopy (FESEM) was conducted at different galvanostatic discharge depths, a limited capacity of 2000 mAh g⁻¹ and a current density of 2000 mA g⁻¹

www.advmat.de

www.advmat.de

Figure 2. FESEM images of a) the discharged pristine CNT cathode at a current density of 200 mA g^{-1} and a specific capacity of 500 mAh g^{-1} , b) the CNT cathode at 1000 mAh g^{-1} , c) the CNT cathode at 2000 mAh g^{-1} , d) the discharged RuO₂/CNT cathode at 500 mAh g^{-1} , e) the discharged RuO₂/CNT cathode at 1000 mAh g^{-1} , and f) the discharged RuO₂/CNT cathode at 2000 mAh g^{-1} . Insets in (d–f) show the corresponding enlarged FESEM images. g) The discharge curves of Li–O₂ cells at a current density of 200 mA g^{-1} and a specific capacity limit of 2000 mAh g^{-1} . h) Corresponding PXRD patterns of the two types of discharged cathodes. The PXRD peaks can be assigned to Li₂O₂, although the morphology of the discharge product is different. i) The rate capability of the Li–O₂ cells with each type of cathode at current densities of 100 mA g^{-1} and 2 A g^{-1} .

(Figure 2). The FESEM image of the discharged CNT cathodes at the initial capacity of 500 mAh g^{-1} (point a in Figure 2g) reveals that the Li₂O₂ discharge product has a small disc/toroid (100-200 nm in size) morphology (Figure 2a), which is consistent with the results reported by other groups.^[29-31,33] As the discharge capacity increases, more abundant discs/toroids are formed (Figure 2b,c). In sharp contrast, on the RuO₂/CNT cathodes at the initial 500 mAh g^{-1} capacity, micrometer-sized flower-like assemblies (5 µm in size) exist (Figure 2d), which have not been previously reported. As the capacity increases, increasing numbers of relatively large (9 µm) flower-like assemblies form (Figure 2e,f). Additionally, the flower-like assemblies on discharged RuO₂/CNT cathodes remain observable, even at a high discharge current density of 500 mA g^{-1} , whereas Li₂O₂ is only deposited as thin conformal films on the CNT cathode surface at this high current (Figure S5, Supporting Information), in general agreement with previous observations. The powder X-ray diffraction (PXRD) patterns of the discharged cathodes in Figure 2h confirm that in both cases, Li₂O₂ is the only crystalline discharge product, regardless of the morphological difference. The Li-O2 cell with the RuO2/CNT cathode exhibits an exceptionally high capacity of 29 900 mAh g⁻¹ at a current density of 100 mA g⁻¹, which is more than five times the specific capacity of the cell with the pristine CNT cathode, i.e., 6050 mAh g⁻¹ (Figure 2i). More importantly, a high capacity of 8930 mAh g⁻¹ could be obtained even at a high current density of 2 A g⁻¹, which corresponds to superior rate performance.

We argue that the improvement in capacity can be attributed to the formation of flower-like Li_2O_2 via the enhanced solvationmediated mechanism (vide infra), which overcomes the chargetransport limitations inherent in the surface growth route and the electronically insulating property of Li_2O_2 .^[34]

Figure 3a schematically shows the two electrochemical (and/ or chemical) Li_2O_2 growth pathways. In aprotic solvents, O_2 reduction initially proceeds through the one-electron reduction process to form LiO_2 , which is present as both LiO_2 adsorbed on the electrode surface and LiO_2 dissolved in the electrolyte, according to the following equilibrium

$$\text{LiO}_2^* \rightleftharpoons \text{Li}^+(\text{sol}) + \text{O}_2^-(\text{sol}) + \text{ion pairs (sol)} + \text{clusters (sol)}$$
 (1)

where * refers to surface-adsorbed species and (sol) indicates species in solution. The equilibrium is governed by the stability of the Li⁺ and O₂⁻ ions in solution relative to that on the cathode surface, which is determined by two competing and crucial factors: the electron-donating propensity of the electrolyte solvent and the surface-binding energy on the cathode (Figure 3a). When the Gibbs free energy for LiO₂* on the cathode surface is lower than that for the dissolved species (Li⁺(sol) + O₂⁻(sol) + ion pairs(sol) + clusters(sol)) in the solvent, i.e., $\Delta G^{\circ} > 0$, the equilibrium lies to the left of Equation (1). The LiO₂* undergoes a second reduction, forming Li₂O₂ thin films (thickness < 10 nm) on the cathode surface through the surface-adsorption growth pathway

www.MaterialsViews.con

www.MaterialsViews.com

Figure 3. a) Schematic of the Li_2O_2 growth mechanism showing the surface-adsorption pathway follows when the Gibbs free energy for LiO_2^* on the cathode surface exceeds that of the dissolved species and the solvation-mediated pathway follows when the dissolved species have lower Gibbs free energy than the LiO_2^* on the surface. The RuO_2/CNT cathode possessing a suppressed surface binding energy toward the superoxide species is viewed as the "moon surface," and the CNT cathode is the "earth surface." b) LSVs performed at 0.05 mV s⁻¹ with pristine CNT and RuO_2/CNT cathodes in $Li-O_2$ cells. The CNT cathode shows a single sharp peak in the LSV at ≈ 2.5 V, whereas the LSV curve for the RuO_2/CNT cathode exhibits a distinct second peak at ≈ 2.22 V. The first peak is attributed to surface-adsorption Li_2O_2 growth and the second peak is attributed to the solvation-mediated growth. c) Top and side views of optimized structures and the corresponding binding energies of O_2^- and LiO_2 on the double-defect CNT with a bound C-O-C group. d) The optimized structures and the corresponding binding energies of O_2^- and LiO_2 on the RuO_2/CNT cated with RuO_2 . In each structure, the top and side views are shown in the upper and lower panels, respectively. Color code: carbon (gray), oxygen (red), ruthenium (dark green), lithium (pink), and oxygen atom of O_2^- and LiO_2 (blue).

$$\operatorname{LiO}_{2}^{*} + e^{-} + \operatorname{Li}^{+}(\operatorname{sol}) \to \operatorname{Li}_{2}O_{2}(s)$$
⁽²⁾

where (s) indicates a solid phase. In contrast, when the Gibbs free energy for the dissolved species is lower than that for LiO_2^* on the surface, i.e., $\Delta G^\circ < 0$, the equilibrium lies to the right, with the reduction proceeding predominantly along the solvation-mediated growth pathway:

$$\operatorname{Li}^{-}(\operatorname{sol}) + \operatorname{O}_{2}^{-}(\operatorname{sol}) + \operatorname{ion pairs}(\operatorname{sol}) + \operatorname{clusters}(\operatorname{sol}) \rightarrow \\\operatorname{Li}_{2}\operatorname{O}_{2}(s) + \operatorname{O}_{2}(g)$$
(3)

where (g) indicates the gas state. The solubility of O_2^- in the electrolyte can activate a mechanism in which O_2^- acts as a redox mediator for the electrochemical growth of $\rm Li_2O_2$ that is not limited by the charge transport of $\rm Li_2O_2$ and results in

www.advmat.de

Materials

www.MaterialsViews.com

Figure 4. FESEM images of a) the recharged RuO_2/CNT cathode at a current density of 200 mA g⁻¹ and a charge of 500 mA h g⁻¹, b) the RuO_2/CNT cathode recharged to 1000 mA h g⁻¹, and c) the RuO_2/CNT cathode recharged to 2000 mA h g⁻¹. d) XRD patterns and e) IR spectra comparing a pristine RuO_2/CNT cathode to cathodes at the end of discharge and charge at a specific capacity limit of 2000 mA h g⁻¹. The spectra for standard Li₂O₂ are also shown for reference. f) The recharge curves of Li–O₂ cells at a current density of 200 mA g⁻¹ and a charge of 2000 mA h g⁻¹. g) Schematic of the Li₂O₂ oxidation mechanism showing the two-electron transfer pathway followed when LiO₂* is adsorbed to the cathode surface and the single-electron transfer pathway follows when LiO₂(sol) is dissolved in the electrolyte. h) CV of the discharged CNT cathode and the discharged RuO₂/CNT cathode in Li–O₂ cells at a constant scan rate of 0.1 mV s⁻¹.

large toroidal crystals (typically less than 2 µm in size at low current rates).^[29-31,33] To understand the possible effect of the cathode surface properties on the Li₂O₂ growth pathway, density functional theory (DFT) calculations were performed using the Vienna ab initio simulation package. The optimized structures and the corresponding binding energies between the various reduced species $(O_2^- \text{ and } \text{LiO}_2 \text{ ion pairs})$ and both the CNT and RuO₂/CNT surfaces are shown in Figure 3c,d. We find that the binding energies of the reduced species on CNT surface (-0.82 eV for O_2^- and -1.72 eV for LiO₂) are much higher than those on the RuO2/CNT surface (-0.13 eV for O₂⁻ and 0.21 eV for LiO₂), indicating that the "agravic" species are more easily liberated from the RuO₂/CNT surface and that they spread to the electrolyte. Therefore, the solvation-mediated growth pathway is believed to produce relatively large Li₂O₂ (Figure 3a), in good agreement with the experimental observations (Figure 2). This is further supported by the discharge linear scan voltammograms (LSVs) of the Li-O2 cell with both CNT and RuO₂/CNT cathodes (Figure 3b). Other authors have recently suggested that the first peak (at ≈ 2.5 V) in the LSV is related to the surface-adsorption growth pathway of Li₂O₂ and that the second peak (at ≈ 2.3 V) is related to the solvation-mediated growth pathway of Li₂O₂, where O₂⁻ acts as a redox mediator.^[21,23] The LSV of cells with the RuO₂/CNT cathode also exhibits a strong second peak ascribed to the solvation-mediated Li₂O₂-formation mechanism.

The decomposition process of Li_2O_2 is related to its composition and shape and was investigated using SEM, and cyclic voltammograms (CVs) during recharging. **Figure 4** clearly shows that the micrometer-sized, flower-like Li_2O_2 deposited on theRuO₂/CNT cathode surface during discharging to 2000 mAh g⁻¹ (Figure 2f) immediately starts to disintegrate during recharging to 500 mAh g⁻¹ (Figure 4a). Remnants of the flower-like Li_2O_2 assemblies remain visible, but many melted from the surface, which becomes rougher. Next, the Li_2O_2 assemblies decrease in size and eventually disappear

www.MaterialsViews.com

completely, as shown by the SEM images during charging to 1000 mAh g^{-1} (Figure 4b) and at full charge (Figure 4c). This is further confirmed by the PXRD and Fourier transform infrared (FTIR) measurements, which indicate that the Li₂O₂ discharge products are no longer visible (Figure 4d,e), consistent with the impedance analysis results (Figure S8, Supporting Information). Sizable Li₂O₂ products are well known to allow an appreciable discharge capacity, which agrees well with Figure 2i, but their decompositions are difficult, leading to a high charge potential. Interestingly, our experimental observations show that the charge potential of the Li-O₂ cell can be significantly improved by the RuO₂/CNT cathode (Figure 4f). Specifically, its average charge potential is much lower (by 840 mV at 200 mA g⁻¹ and by 1100 mV at 500 mA g⁻¹) than that with the pristine CNT cathode (Figure 4f and Figure S9, Supporting Information). How can the promoter affect the recharge process is unknown given the large (~9 µm in size) flower-like Li₂O₂ assemblies formed during discharge. However, we argue that the charge voltage differences may be attributable to the different Li2O2 decomposition mechanisms. Previous reports have theoretically and experimentally demonstrated that the decomposition of Li2O2 during the charge process could proceed through two different pathways^[35]

$$\text{Li}_2\text{O}_2 \rightarrow \text{Li}^+ + \text{e}^- + \text{LiO}_2 \tag{4}$$

$$\text{LiO}_2 + \text{LiO}_2 \rightarrow \text{Li}_2\text{O}_2 + \text{O}_2 \tag{5}$$

or

$$\mathrm{Li}_2\mathrm{O}_2 \to 2\mathrm{Li}^+ + 2\mathrm{e}^- + \mathrm{O}_2 \tag{6}$$

Figure 4g schematically shows the two electrochemical (or chemical) pathways for Li2O2 decomposition. The first pathway (two-electron transfer) is associated with the delithiation of Li2O2 to form LiO2 species in the first step via a solid-solution route (Equation (4)). In the second step, the metastable LiO₂ disproportionates to evolve O₂, leading to an overall $2e^{-}/O_{2}$ oxygen evolution process (Equation (5)). The second pathway (single-electron transfer) involves the direct electrochemical decomposition of Li2O2 via a two-electron process (Equation (6)). The charge overpotential of the Li_2O_2 decomposition through the first pathway is lower than that through the second pathway. Based on the data presented above, we postulate that the enhanced LiO₂ solvation ability on the RuO₂/CNT cathode enables disproportionation pathways, such as Equation (5), leading to the single-electron transfer pathway that oxidizes Li₂O₂. To support this hypothesis, the electrochemical processes of oxygen in the Li-O2 cell were also investigated using CV (Figure 4h). In the CV curves for the Li-O2 cell with CNT cathode, only a single oxidation peak is observed at 4.25 V ($E_{a,1}$). This potential agrees well with the galvanostatic experiments (Figure 4f) and probably corresponds to the electrochemical decomposition of Li2O2 via a two-electron pathway (Equation (6)). Interestingly, three partially overlapping oxidation peaks for the Li-O2 cell with RuO2/CNT appear at lower potentials of 3.35 V ($E_{b,1}$), 3.72 V ($E_{b,2}$), and 3.90 V $(E_{b,3})$. We speculate that peak $E_{b,1}$ can be attributed to the oxidation of the superoxide-like species $(Li_{2-x}O_2)$ on the surface

www.advmat.de

of the flower-like Li_2O_2 assemblies through the single-electron transfer pathway

$$\text{Li}_{2-x}O_2 \to (1-x)\text{Li}^+ + (1-x)e^- + \text{Li}O_2$$
 (7)

This speculation is consistent with the recent conclusions of Yang et al., who reported that a superoxide-like component forms on the peroxide surface, as confirmed by low-temperature Raman spectra and magnetic measurements.^[36] The oxidation of a superoxide-like component was proposed to cause this low oxidation potential.^[37] Peak $E_{b,2}$ is assigned to the oxidation of the inside of the flower-like $\mathrm{Li}_2\mathrm{O}_2$ assemblies formed in the initial discharge process through the single-electron transfer pathway (Equation (4)). Peak $E_{b,3}$ is assigned to the oxidation of Li₂O₂ through the two-electron transfer pathway (Equation (6)). These results suggest that the recharge processes in the Li-O₂ cell with the RuO₂/CNT cathode are partially switched from a two-electron pathway to a single-electron one, resulting in a lower potential by improving the Li2O2-oxidation kinetics. We also observed that the Li_2O_2 oxidation peak $E_{b,3}$ through the two-electron transfer process of the Li-O2 cell with RuO2/CNT is 350 mV lower than that of the pristine CNT cathode, suggesting that the RuO₂/CNT cathode effectively improves the thermodynamics of Li2O2 oxidation, in agreement with previous studies. Naturally, the real recharge processes likely consist of an intricate combination of all possible pathways. More studies are needed to clarify the complex charge mechanism.

The above studies, which combined electrochemical and DFT calculation methods, confirm the superiority of the RuO₂/ CNT cathode in terms of the improved kinetics and thermodynamics of Li₂O₂ formation/decomposition, which encourage us to further investigate the cycling stability of the Li–O₂ cell. The voltage obtained at the discharge terminal of the RuO2/CNT cathode in the Li–O₂ cell is >2.0 V for 171 and 103 cycles at current densities of 200 and 500 mA g⁻¹, respectively (Figure 5a), which is much better than the reported results. In contrast, the discharge voltages of the CNT degrade to <2.0 V after only 45 and 10 cycles, respectively. This confirms that the RuO₂/CNT cathode has superior rechargeability and cycling stability. We extended the battery test by determining the cycling response at a specific capacity limit of 500 mAh g⁻¹ and a current density of 200 mA g⁻¹. As shown in Figure S10 (Supporting Information), more than 400 stable cycles are obtained based on the RuO₂/CNT cathode, significantly outperforming the 135 stable cycles of the CNT cathode. To further understand this superior performance, the evolution of the morphology and crystallinity of the discharged cathodes after the 1st, 5th, and 20th cycles was examined. In the CNT cathode, although the discharge products at the end of the 1st discharge have a disc/toroid morphology, the discs/toroids cannot be detected after only five cycles (Figure 5b-d). In sharp contrast, in the RuO₂/CNT cathode, there is clear evidence of micrometer-sized, flower-like assemblies even after 30 cycles (Figure 5e-g and Figure S11a, Supporting Information). The crystallinity of Li₂O₂ show similar trends (Figure 5h,i and Figure S11b,d, Supporting Information). We speculate that the degradation of the morphology and crystallinity of Li2O2 on the pristine CNT cathode during cycling is highly possible because of the occurrence of parasitic electrochemistry (or chemistry) in the Li-O₂ cell: (1) increasing

Figure 5. Product morphology and crystallinity upon cycling. a) Variation of the terminal voltage upon the discharge of the $Li-O_2$ cells at current densities of 200 and 500 mA g⁻¹ and a specific capacity limit of 1000 mAh g⁻¹. FESEM images of b) the 1st discharged pristine CNT cathode. The current density is 200 mA g⁻¹ and the specific capacity is 2000 mAh g⁻¹, c) the CNT after the 5th discharge and d) the CNT after the 20th discharge. FESEM images of e) the RuO₂/CNT cathode after the first discharge at a current density of 200 mA g⁻¹ and a specific capacity of 2000 mAh g⁻¹, f) the RuO₂/CNT after the 5th discharge and g) the RuO₂/CNT after the 20th discharge. The current density is 200 mA g⁻¹ and the specific capacity is 2000 mAh g⁻¹. Insets of (e–g) show the corresponding enlarged FESEM images. PXRD patterns of h) discharge products on the pristine CNT cathode and i) the RuO₂/CNT cathode at the end of discharge after the indicated number of cycles. The patterns for Li_2O_2 are also shown for reference.

accumulation of the side products (Li_2CO_3 and lithium carboxylates) on the cathode surface and (2) the presence of CO_2 in the electrolyte from the electrochemical oxidation of the side products during charging, inhibiting the nucleation and growth of Li_2O_2 during the subsequent discharge (vide infra). To this end, the parasitic electrochemistry/chemistry in the Li–O₂ cells was examined by quantitative FTIR and ¹H nuclear magnetic resonance (NMR) spectroscopy. The FTIR spectra indicate that the products in Li–O₂ cells with both pristine CNT and RuO₂/CNT cathodes after the first discharge are overwhelmingly dominated

www.advmat.de

www.MaterialsViews.com

Figure 6. FTIR spectra of the pristine CNT and RuO_2/CNT cathodes after a) the 1st discharge and b) the 20th discharge. The spectra for Li₂O₂, Li₂CO₃, HCO₂Li, and CH₃CO₂Li are also shown for reference. ¹H NMR spectra of the pristine CNT and RuO_2/CNT cathodes after c) the 1st discharge and d) the 20th discharge. The spectra for TEGDME(tetraethylene glycol dimethyl ether), HCO₂Li, and CH₃CO₂Li are also shown for reference.

by Li_2O_2 (Figure 6a), which is in accordance with the PXRD data (Figure 2h). However, after the 20th cycle, FTIR provides clear evidence of significant side reactions on the pristine CNT cathode at the end of discharge. In addition to Li₂O₂, the peaks at \approx 864, 1441, and 1500 cm⁻¹ can be assigned to Li₂CO₃, that at \approx 1371 cm⁻¹ to HCO₂Li, and that at \approx 1615 cm⁻¹ to CH₃CO₂Li (Figure 6b). In contrast, significantly weaker peaks are ascribed to side products on the RuO2/CNT cathode after 20 discharges (Figure 6b) and may have resulted from the partial decomposition of the ether-based electrolyte. Based on FTIR calibration curves obtained in our recent work,^[34,38] the molar ratio of the Li₂O₂ to the side products (Li₂CO₃, CH₃CO₂Li, and HCO₂Li) was determined using the obtained FTIR spectra (Figure 6). In sharp contrast, the molar Li₂O₂/side product ratio at the end of 20 cycles for the Li-O2 cell with the pristine CNT was only 42.4/57.6, which is much lower than that obtained with the RuO₂/CNTcathode (89.3/10.7). In addition, ¹H NMR spectroscopy (Figure 6c,d and Figure S12, Supporting Information) indicates that the amount of electrolyte decomposition products (CH₃CO₂Li and HCO₂Li) on the RuO₂/CNT cathode is much less than that on the pristine CNT cathode during cycling, which is consistent with the above FTIR results. These observations clearly demonstrate the superiority of the Li-O2 cells with the RuO₂/CNT cathode in terms of the electrochemical/ chemical stability, which can be ascribed to the ability of the RuO₂ protective layer on the CNT to effectively prevent direct contact between the CNT defect sites and the Li₂O₂ or between the defect sites and electrolyte and, thus, effectively prevent or

reduce the possible side reactions. In addition, the low charge potential observed with the RuO_2/CNT cathode alleviates the high-potential-induced decomposition of the electrolyte and carbon cathode during charging, which also contributes to the high electrochemical/chemical stability. The effect of parasitic electrochemistry/chemistry on the evolution of the morphology and crystallinity of Li_2O_2 is discussed in detail (see Figure S15, Supporting Information).

Our work establishes a new growth, decomposition, and evolution mechanisms of Li₂O₂ upon cycling in Li–O₂ cells using a highly stable cathode based on CNTs coated with RuO₂. The RuO₂/CNT cathode possessing a feeble surface binding energy toward the superoxide species (as LiO_2 , O_2^{-}) to promote the formation of LiO₂, with O₂⁻ readily diffusing to the electrolyte, is biased to enhance both the solvation-mediated growth of Li₂O₂ during discharging and the single-electron transfer oxidation of Li2O2 during recharging, leading to efficient formation/decomposition of the micrometer-sized, flower-like Li₂O₂ assemblies reported here for the first time. We also demonstrate that the rapid formation/decomposition mechanism of the micrometer-sized, flower-like Li2O2 is sustainable over many cycles because of the minimal accumulation of side products on the RuO₂/CNT cathode and the presence of CO₂ in the electrolyte produced by parasitic electrochemistry/chemistry during Li-O2 cell cycling. These advantages of the RuO2/CNT cathode endow the Li-O2 battery with an ultrahigh specific capacity (29 900 mAh g^{-1} and 8930 mAh g^{-1} at current densities of 200 mA g^{-1} and 2 A g^{-1} , respectively), relatively low www.advmat.de

_____Makinals

www.MaterialsViews.com

overpotentials (0.45 V at a current density of 200 mA g⁻¹), and a long cycle life (171 cycles at a current density of 200 mA g⁻¹ and a specific capacity limit of 1000 mAh g⁻¹). Hence, we believe that the results presented here will encourage further studies of the electrochemical mechanism of Li–O₂ batteries, although many challenges remain to be overcome before practical devices can be realized.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

J.-J.X., Z.-W.C., and Y.W. contributed equally to this work. This work was financially supported by National Program on Key Basic Research Project of China (2012CB215500 and 2014CB932300), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010404), and National Natural Science Foundation of China (21422108, 21271168, and 51472232).

Note: The acknowledgements were updated on November 10, 2016, after initial publication online.

Received: June 30, 2016 Revised: July 26, 2016

Published online: September 16, 2016

- P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
- [2] T. Liu, M. Leskes, W. Yu, A. J. Moore, L. Zhou, P. M. Bayley, G. Kim, C. P. Grey, *Science* **2015**, *35*, 530.
- [3] S. H. Oh, R. Black, E. Pomerantseva, J. H. Lee, L. F. Nazar, Nat. Chem. 2012, 4, 1004.
- [4] J. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. S. Jeong, J.-B. Park, Z. Z. Fang, B. Kumar, A. S-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, *Nature* **2016**, *529*, 377.
- [5] J. Zhu, F. Wang, B. Wang, Y. Wang, J. Liu, W. Zhang, Z. Wen, J. Am. Chem. Soc. 2015, 137, 13572.
- [6] Q.-C. Liu, J.-J. Xu, S. Yuan, Z. W. Chang, D. Xu, Y.-B. Yin, L. Li, H.-X. Zhong, Y.-S. Jiang, J.-M. Yan, X.-B. Zhang, *Adv. Mater.* 2015, 27, 5241.
- [7] K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1.
- [8] Z. Peng, S. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563.
- [9] M. M. O. Thotiyl, S. A. Freunberger, P. Zhuangquan, C. Yuhui, L. Zheng, P. G. Bruce, *Nat. Mater.* 2013, 12, 1050.
- [10] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 1390.
- [11] B. D. McCloskey, A. Valery, A. C. Luntz, S. R. Gowda, G. M. Wallraff, J. M. Garcia, T. Mori, L. E. Krupp, J. Phys. Chem. Lett. 2013, 4, 2989.

- [12] S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 8609.
- [13] Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J.-G. Zhang, Y. Wang, J. Liu, Adv. Funct. Mater. 2013, 23, 987.
- [14] T. Zhang, H. Zhou, Angew. Chem. Int. Ed. 2012, 51, 11062.
- [15] S. Lau, L. A. Archer, Nano Lett. 2015, 15, 5995.
- [16] Y. S. Mekonnen, J. M. Garcia-Lastra, J. S. Hummelshøj, C. Jin, T. Vegge, J. Phys. Chem. C 2015, 119, 18066.
- [17] C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar, J. Janek, ACS Appl. Mater. Interfaces 2014, 6, 12083.
- [18] B. D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A. C. Luntz, J. Phys. Chem. C 2012, 116, 23897.
- [19] V. Viswanathan, J. K. Nørskov, A. Speidel, R. Scheffler, S. Gowda, A. C. Luntz, J. Phys. Chem. Lett. 2013, 4, 556.
- [20] J. Lu, Y. Lei, K. C. Lau, X. Luo, P. Du, J. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. A. Ei-Hady, Y.-K. Sun, L. A. Curtiss, K. Amine, *Nat. Commun.* **2013**, *4*, 2383.
- [21] C. J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, J. Phys. Chem. C 2012, 116, 20755.
- [22] M. J. Trahan, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, J. Electrochem. Soc. 2003, 160, A259.
- [23] N. B. Aetukuri, B. D. McCloskey, J. M. Garcia, L. E. Krupp, V. Viswanathan, A. C. Luntz, *Nat. Chem.* 2015, 7, 50.
- [24] L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon, P. G. Bruce, *Nat. Chem.* 2014, *6*, 1091.
- [25] B. D. Adamset, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, *Energy Environ. Sci.* 2013, 6, 1772.
- [26] R. R. Mitchell, B. M. Gallant, Y. Shao-Horn, C. V. Thompson, J. Phys. Chem. Lett. 2013, 4, 1060.
- [27] J. Xie, X. Yao, Q. Chen, I. P. Madden, P. Dornath, C.-C. Chang, W. Fan, D. Wang, Angew. Chem. Int. Ed. 2015, 127, 4373.
- [28] Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Angew. Chem. Int. Ed. 2013, 53, 442.
- [29] D. Zhai, H. H. Wang, J. Yang, K. C. Lau, K. Li, K. Amine, L. A. Curtiss, J. Am. Chem. Soc. 2013, 135, 15364.
- [30] R. Black, B. Adams, L. F. Nazar, *Adv. Energy Mater.* **2012**, *2*, 801.
- [31] J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Angew. Chem. Int. Ed. 2013, 52, 3887.
- [32] Y. T. Kim, T. Mitani, Appl. Phys. Lett. 2006, 89, 033107.
- [33] Q.-C. Liu, J.-J. Xu, D. Xu, X-B. Zhang, Nat. Commun. 2015, 6, 7892.
- [34] J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang, X.-B. Zhang, Nat. Commun. 2013, 4, 2438.
- [35] S. Ganapathy, B. D. Adams, G. Stenou, M. S. Anastasaki, K. Goubitz, X.-F. Miao, L. F. Nazar, M. Wagemaker, J. Am. Chem. Soc. 2014, 136, 16335.
- [36] J. B. Yang, D. Zhai, H.-H. Wang, K. C. Lau, J. A. Schlueter, P. Du, D. J. Myers, Y.-K. Sun, L. A. Curtiss, K. Amine, *Phys. Chem. Chem. Phys.* **2013**, *15*, 3764.
- [37] D. Y. Zhai, H.-H. Wang, J. Yang, K. C. Lau, K. Li, K. Amine, L. A. Curtiss, J. Am. Chem. Soc. 2013, 135, 15364.
- [38] J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci. 2014, 7, 2213.