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Carbonyl organic electrode molecules have broad prospects for application in lithium-ion batteries due to

their environmental friendliness and cost-effective merit. To overcome the drawbacks associated with

traditional time-consuming and costly trial and error experiments, herein, high-throughput calculations

and machine learning methods have been employed to accelerate the development of high-

performance carbonyl organic electrode molecules by evaluating one million molecules. Hierarchical

clustering has been introduced into the selection process to find those target molecules and help us

eliminate non-ring molecules. As the reduction potential is a crucial factor in evaluating the performance

of electrode materials, based on the created dataset of organic electrode molecules by high-throughput

calculations, we have built a machine learning model whose coefficient of determination can reach 0.88

for predicting the reduction potential. With the above efforts, naphthalene-1,4,5,8-tetraone with high

reduction potential and energy density has been screened out and indeed exhibits a long cycle life of

2500 cycles at 1 A g−1 and a high discharge voltage of 2.5 V. The approach developed in this work offers

new insight to filter advanced organic electrode molecules accurately and rapidly for Li-ion batteries.
1 Introduction

With the ever-increasing demand for electric vehicles, elec-
tronic devices and grid-scale energy storage, the development of
lithium-ion batteries (LIBs) reaches an unprecedented level.
However, Fe, Co and Ni-based cathode materials of traditional
LIBs are confronted with high cost and shortage of resources. By
virtue of inexpensive and readily accessible sources as well as
environmental friendliness, organic electrode molecules
(OEMs) have emerged as a focal point for next-generation
electrode materials.1–3 Generally, OEMs are composed of non-
metallic elements (e.g., H, C, N, O).4 The so molecular skel-
eton of OEMs is suitable for exible electronic devices in
comparison with traditional inorganic electrode materials.5–7

The theoretical capacity (TC, mA h g−1) of OEMs is designable
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by adjusting the number of redox blocks. For example, cyclo-
hexanehexone (C6O6) consisting of six redox blocks (carbonyls)
without other supporting blocks served as a cathode material
for LIBs with the highest capacity of 902 mA h g−1 among
carbonyl-based compounds.8 Besides, the reduction potential
(RP) of OEMs can be modied by introducing electron-
withdrawing or electron-donating functional groups near the
redox blocks, leading to an increase or decrease in the RP.9

Zheng et al. introduced two Br atoms into tetraoxapentacene,10

yielding discharge plateaus that were notably elevated, at
approximately 4.4 V (vs. Li+/Li), and surpassing those of most
OEMs. In addition, incorporation of diverse electron-
withdrawing heteroaromatic building blocks, particularly pyr-
idazine, into phenanthrenequinone has been observed to
enhance the discharge potential through density functional
theory (DFT) calculations.11 However, traditional strategies such
as experiments and DFT calculations to tailor OEMs are not only
time-consuming but also costly. This inefficiency signicantly
hampers research progress.

In recent years, machine learning (ML), an emerging new
interdiscipline, has signicantly contributed to the elds of
chemistry andmaterials science,12–14 offering practical solutions
to various challenges in these domains. Furthermore, ML can
be employed to generate and explore enormous chemical space
among which optimal candidates can be swily identied
without manual labor.15,16 For example, Shree Sowndarya S. V.
and colleagues have developed a multi-objective reinforcement
This journal is © The Royal Society of Chemistry 2024
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learning framework trained with approximately 100 000
quantum chemistry simulations. This framework can simulta-
neously predict the stability, RP and synthesizability of organic
radicals.17 Wang et al. have synthesized three photosensitizers
successfully by active learning among 7 million molecules.18

Therefore, owing to various building blocks, more advanced
OEMs can be quickly explored via ML instead of chemists'
intuition or experience. However, there are few reports on the
utilization of ML for developing OEMs.19–21 On one hand, the
electrode preparation process and the operating environment of
OEMs differ signicantly, making it challenging to establish
a unied experiment database. On the other hand, the quantum
chemical database of OEMs can be readily implemented
according to the uniform standards. Therefore, it is worthwhile
to develop a quantum chemical database of OEMs and integrate
it using ML to dig out more potential OEMs.

Herein, we have illustrated a large-scale strategy of identi-
fying advanced OEMs for LIBs (Fig. 1). Initially, one million
organic molecules have been gathered from PubChem. Then,
based on the characteristics of the reported OEMs, 1524 mole-
cules have been selected as the candidates of OEMs with the
consideration of the type of atom, number of active sites, and
hierarchical clustering algorithm. Subsequently, the RP of 1200
molecules randomly selected from the 1524 molecules has been
calculated by high-throughput calculations (HTCs), which
serves as the training set for a support vector regression (SVR)
ML model. Furthermore, the structure–property relationship
mapping RP has further been excavated from the ML data,
incorporating descriptors such as the number of conjugated
double bonds, to dene ideal OEMs. From the predictions of
Fig. 1 Overview of the high energy density OEMs found by HTCs andML
Then, the RP of 1524OEMs is calculated. After this, themachine learningm
an organic molecule is selected to serve as the cathode for LIBs.

This journal is © The Royal Society of Chemistry 2024
the remaining molecules, naphthalene-1,4,5,8-tetraone (NT)
with high RP and TC has been singled out for application in
LIBs, exhibiting high energy density and long cycle life.

2 Results and discussion
2.1 Collecting data

In the past decades, considerable papers have reported on
organic electrode materials. Hence, we gathered 137 OEMs from
hundreds of high-quality papers with comparatively complete
experiment data on the Web of Science, using the keyword
‘organic electrode’. Most of these materials indicated a capacity
of less than 400 mA h g−1 and a voltage of less than 3 V (Fig. 2a).
Further analysis revealed that 119 of these are organic conjugated
carbonyl molecules, forming the carbonyl molecule dataset
(CMDS), which constitutes 86.86% of the 137 OEMs (Fig. 2b). It is
obvious that carbonyl-based OEMs are star materials and
possessed of the merits of high capacity and fast kinetics.
Therefore, in this work, our focus is also directed towards
carbonyl-based OEMs. As the OEMs in the CMDS contain non-
metal heavy atoms such as C, N, and O, along with a few S and
Cl atoms (Fig. 2c), most molecules in CMDS exhibit a relative
molecular mass of less than 500 (Fig. 2d), and the ratio of
carbonyl bonds is less than 20% (Fig. 2e). These molecules also
feature a high ratio of aromatic bonds and heteroatoms
(Fig. S1†).

2.2 Screening database

Besides collecting labeled OEMs from the Web of Science, we
have gathered one million organic molecules from PubChem22
from PubChem. First, the OEMs collected from PubChem are screened.
odel is built utilizing the results of high-throughput calculation. Finally,

J. Mater. Chem. A, 2024, 12, 12034–12042 | 12035
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Fig. 2 Analysis of the collected OEM dataset from the reported papers. (a) Voltage and capacity of OEMs. (b) The proportion of the molecules
containing conjugated carbonyl groups in the 137 OEMs. (c) The element distribution of 119 organic conjugated carbonyl molecules. The
distribution of relative molecular mass (d) and the carbonyl bond ratio (e) in CMDS.
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to explore unexploited OEMs (more details are shown in ESI
Note 1†).

However, the sheer volume of one million organic molecules
made it impractical for manual recognition of those with the
potential to become OEMs. Therefore, we set up screening
conditions to increase the proportion of effective OEMs. As
shown in Fig. 3a, we initially selected molecules containing only
H, C, N, O, S, and Cl atoms, and these molecules were required
to possess conjugated carbonyl. Then, referring to Fig. 2a, we
identied that only a fewmolecules displayed a capacity of more
than 400 mA h g−1. Consequently, our focus shied to mole-
cules with high TC exceeding 400 mA h g−1 (more details about
the calculating method of TC are shown in ESI Note 2†).
Sequentially, aer (i), (ii) and (iii) stages of selection by RDKit,23

used for identifying elements and functional groups and
counting the conjugated carbonyl bonds, a total of 2483 mole-
cules, designed as PubChem Dataset (PubDS), met our previous
conditions. However, it is conceivable that not all 2483 mole-
cules can serve as OEMs. Therefore, additional measures
should be taken to narrow the range of potential OEMs to
reduce time and cost. At this point, we anticipate nding
internal connections among OEMs in CMDS so that molecules
in PubDS similar to OEMs can be screened out.

Clustering methods are usually used to nd the similarity of
unlabelled data and group them accordingly. Zhang et al.
utilized modied X-ray diffraction on crystals to categorize Li-
containing compounds into 7 clusters, identifying lithium ion
12036 | J. Mater. Chem. A, 2024, 12, 12034–12042
conductors in the IV and V clusters with higher conductivities.24

In addition, clustering methods are also found to have extensive
use in the realm of organic molecules. Based on Simplied
Molecular Input Line Entry System (SMILES) sequences,25 the
clustering method can provide effective discrimination for both
hydrophobic and hydrophilic monomers.26 In this work, hier-
archical clustering is leveraged to further screen out those
molecules with more promise to become OEMs.

Herein, PubDS and CMDS were combined to create a new
carbonyl molecule database, referred to as CMDB. Initially, the
molecules in CMDB, stored in SMILES format, were converted
into another computer-readable MOL format. Subsequently,
Morgan Fingerprints (MF),27 which contained molecular struc-
ture information of the local environment, were extracted from
these molecules to serve as input for hierarchical clustering.
The radius and nbits were set to 2 and 2048, respectively, by
RDKit. The Euclidean distance was used to calculate MF during
hierarchical clustering, and the complete dendrogram is shown
in Fig. S2.† Furthermore, the optimal number of clusters, as
determined by both the elbow method and Calinski Harabasz
method, was found to be three (Fig. 3b). The three clusters
(cluster I, II, and III) contained 921, 44, and 1637 molecules,
respectively (Fig. 3c). The distribution of CMDS and PubDS
within these three clusters is displayed in Fig. 3d and e. Notably,
almost all CMDS molecules are concentrated in cluster III, and
1524 molecules from PubDS are also located in cluster III. To
some extent, this result indeed demonstrates the good internal
This journal is © The Royal Society of Chemistry 2024
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Fig. 3 The screening process and the analysis of hierarchical clustering. (a) The scheme of the screening process with four stages. (b) The
evaluation result of the optimal numbers of clustering. (c) The dendrogram of hierarchical clustering at the optimal clustering number 3. The
molecules of CMDS (d) and PubDS (e) distributed at three clusters, I, II, and III. (f) Visualization of CMDBmolecular space at the optimal clustering
number 3 by t-SNE. (g) Cosine similarity matrix between molecules in CMDB.
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similarity of CMDS via hierarchical clustering. Therefore, the
1524 molecules in cluster III exhibit signicant potential to
serve as OEMs. Simultaneously, we have endeavoured to inter-
pret the reasons behind the classication. The t-Distributed
Stochastic Neighbour Embedding (t-SNE) was implemented to
visualize the two-dimensional molecular space of CMDB, and
three separated clusters conrmed the rationality of hierar-
chical clustering (Fig. 3f). Besides, in Fig. 3g, three clusters were
located in three deeply blue square areas, indicating that
molecules in each cluster were closer by cosine matrix and had
more similar MFs. Therefore, both methods showed that the
1524 molecules had more similar features with OEMs in CMDS.
Last but not least, we also display some molecules from each
cluster in Fig. S3.† It is apparent that clusters I, II, and III
primarily consist of branch chain molecules, straight chain
molecules, and ring molecules, respectively, corresponding to
Fig. 3f and g. In brief, hierarchical clustering successfully
This journal is © The Royal Society of Chemistry 2024
divides PubDS into three parts, among which cluster III is more
similar to OEMs in CMDS, aiding in narrowing down the
potential OEMs and identifying the 1524 molecules.
2.3 High-throughput calculations

To pursue the OEMs with high theoretical energy density, 1200
molecules were randomly selected from 1524 molecules and
high-throughput calculations (HTCs) were carried out to deter-
mine their RP (ESI Note 3†). Every molecule underwent calcula-
tions in four states, as illustrated in Fig. S4,† resulting in a total
of 4800 tasks. Finally, we obtained the RP values for 1003
molecules, while 197 molecules could not be calculated due to
optimization failures. The results of RP from HTCs are shown in
Fig. 4a. Examining the distribution of relative molecular mass
(Fig. 4b), these selected molecules, on the whole, are character-
ized by their small size. The TC of most molecules ranges
between 400 and 600mAh g−1 (Fig. 4c). From the RP perspective,
J. Mater. Chem. A, 2024, 12, 12034–12042 | 12037
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Fig. 4 The results of high-throughput calculations. The violin plot of RP (a), relative molecular mass (b), and TC (c). The top 10 functional groups
according to the accumulative frequency of 307 functional groups from SubFPC for molecules with RP# 0 V (d) andmolecules with RP > 0 V (e).
(f) The schematics of SubFPC2, SubFPC3, SubFPC143, SubFPC137, SubFPC274, and SubFPC287.
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some molecules have extremely low RP, even less than 0 V,
making them unsuitable candidates for OEMs. Hence, the
Substructure Fingerprint Count (SubFPC)28 descriptor,
composed of 307 sub-structures, is used to investigate the
difference between molecules with RP > 0 V and RP # 0 V. The
cumulative frequency of 307 sub-structures is calculated, and the
top 10 sub-structures are exhibited in Fig. 4d and e. Among them,
SubFPC88, SubFPC275, SubFPC295, SubFPC300, SubFPC301,
SubFPC302, and SubFPC307 account for a high proportion in
both types of molecules. However, SubFPC2, SubFPC3, and
SubFPC143 have a higher proportion in the molecules with RP#

0 V, while SubFPC137, SubFPC274, and SubFPC287 possess
a higher proportion in the molecules with RP > 0 V. From Fig. 4f,
it can be observed that the SubFPC2 and SubFPC3 are alkyl
chains, and SubFPC143 represents the carbonic acid derivatives.
In contrast, the SubFPC137 stands for a conjugated double bond
with the carbonyl group, SubFPC274 is an aromatic atom, and
SubFPC287 denotes a conjugated double bond. The more accu-
rate denition of these six functional groups is listed in Table
S1.† By comparison, it is found that the presence of the conju-
gated double bond indeed plays an important role in RP and
endows OEMs with stronger reducibility.
12038 | J. Mater. Chem. A, 2024, 12, 12034–12042
2.4 Machine learning

Based on HTCs, we attempted to build a machine learning
model for more efficiently predicting the RP of OEMs without
DFT calculations. First of all, appropriate descriptors should
be considered to express molecules' inherent features.
SubFPC and Substructure Fingerprint (SubFP) were used to
count the sub-structures. As outlined in Section 2.3, most
functional groups among 307 sub-structures were
uncommon. Therefore, we removed those sub-structures that
were not present in 90% of the molecules, retaining 22 sub-
structures. In addition, the global descriptors such as
Extended Topochemical Atom (ETA, 43 sub-descriptors),
Topological Charge (TopoC, 21 sub-descriptors), and BCUT
(6 sub-descriptors) generated by Padel,28 along with 7 single
descriptors generated by RDKit (Table S2†) were also
included. In a word, a total of 121 descriptors were con-
structed. Specically, the ETA is related to the molecular size,
electronegativity of atoms, and electronic contribution.
TopoC is the charge distribution on the topological molecular
surface, and BCUT is the bond-type combination of adjacent
and nonadjacent atoms.
This journal is © The Royal Society of Chemistry 2024

https://doi.org/10.1039/d4ta00136b


Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
1 

A
pr

il 
20

24
. D

ow
nl

oa
de

d 
by

 C
ha

ng
ch

un
 I

ns
tit

ut
e 

of
 A

pp
lie

d 
C

he
m

is
tr

y,
 C

A
S 

on
 5

/2
6/

20
24

 9
:1

5:
38

 A
M

. 
View Article Online
To understand the relationship between the 121 descriptors
and RP, we quantied their dependency based on the mutual
information algorithm.29 A higher Mutual Information Value
(MIV) indicated a stronger dependency. Therefore, according to
MIV of the 121 descriptors, useless descriptors could be
removed to reduce the dimensionality of feature and enhance
the performance of ML. Furthermore, the SVR served as the
initial training model to reduce the number of descriptors
according to the ranking of MIV for the 121 descriptors. The
performance of the SVR model was evaluated using the 5-fold
cross-validation (Fig. S5†). During the ML training process, the
values of descriptors were normalized. When the rst 48
descriptors were selected, the R2 reached the highest score of
0.812 ± 0.027. Finally, these 48 descriptors remained (Table
S3†). Moreover, Pearson correlation coefficient matrix (PCCM)
between the selected 121 descriptors clearly shows the positive
and negative correlations (Fig. S6†). Aer the mutual informa-
tion method of reducing dimensionality, based on the PCCM of
nally selected 48 descriptors (Fig. S7†), it is obvious that the
successful removal of redundant and irrelevant descriptors with
low correlation contributes to an improved score of SVR.

We then studied three ML models, SVR, Multi-Layer Per-
ceptron (MLP), and XGBoost (XGB) to predict the RP. The
optimal parameters of these three models were determined
through the grid-search method and 5-fold cross-validation.
The learning curves of these three models are shown in Fig.
S8.† When the training set and test set were split into 8 : 2, the
R2 scores for the test set were 0.882, 0.843, and 0.819 for SVR,
MLP, and XGB, respectively (Fig. 5a–c). Also, it was clear that the
curves of training and test of SVR were higher when the training
size was beyond 0.6, illustrating the better performance of SVR.
In addition, the test set of SVR had a smaller mean absolute
Fig. 5 The descriptors and machine learning models. The prediction res
descriptors after the selection of mutual information. (e) The relationsh
ETA_dBetaP and RP.

This journal is © The Royal Society of Chemistry 2024
error (MAE) of 0.243 and root mean square error (RMSE) of
0.334 (Table S4†). Therefore, the SVR model was more appro-
priate to predict the RP in our work.

Among these 48 descriptors, ETA accounts for 45.8% of
them, with half of its sub-descriptors retained following the
mutual information selection process (Fig. 5d). ETA comprises
recording of various expressions like related to size or bulk,
electronegativity, and the electronic contribution of atoms,30

making it possible to accurately describe the electron structure
and atomic composition of OEMs. The rst MIV and second
MIV are SubFPC287 and ETA_dBetaP, respectively. Fig. 5e
illustrates that more conjugated double bonds enhance the RP,
which is consistent with the nding in Section 2.3. As for
ETA_dBetaP (Fig. 5f), it is determined by the following equation:

ETAdBetaP ¼
P

bns �
P

bs

NV

(1)

where bns represents the non-sigma electron, bs stands for the
sigma electron, and NV denotes the molecular volume. The
sigma electron originates from the s-bond, so ETA_dBetaP also
demonstrates that an increase in single bonds corresponds to
a decrease in RP. Other partial descriptors are shown in Fig. S9.†
Furthermore, individual condition expectation (ICE) is intro-
duced to show how different samples are affected by those
descriptors (Fig. S10†). Taking SubFPC287 as an example, all
samples show an upward trend with increasing SubFPC287,
indicating that the conjugated double bond consistently
contributes positively to RP. However, high RP molecules
exhibit minimal change with ETA_dBetaP, which means that
increasing ETA_dBetaP is not an effective way to improve the RP
for high RP molecules. Similar patterns could also be observed
for other descriptors such as ETA_BetaP_ns (

P
bns/NV),
ults of SVR (a), MLP (b), and XGB (c) models. (d) The distribution of 48
ip between the SubFPC287 and RP. (f) The relationship between the

J. Mater. Chem. A, 2024, 12, 12034–12042 | 12039
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Fig. 6 Electrochemical performance of NT. (a) The validation of the remaining 279 molecules using the SVR model and HTCs. (b) Schematic
diagram of the charging and discharging process of NT. (c) The full discharge and charge curves of the 1st, 2nd, 3rd, 10th, and 15th cycles at
0.1 A g−1. (d) The long-term cycling performance of NT at 1 A g−1. (e) Performance comparison of NTwith the reported organic carbonyl cathode
materials.
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max partial charge (Gasteiger charges), and ETA_dBeta
(
P

bns −
P

bs). Specically, SubFPC137 has a negative effect on
high RP molecules. Therefore, by analyzing the ICE of descrip-
tors, it is clear that adjusting these descriptors can guide the
design of OEMs with high RP.
2.5 Experimental

To further verify the accuracy of the SVRmodel, it was employed
to predict the remaining 324 molecules from the above 1524
molecules (Section 2.3), and the RP of these molecules was
calculated by HTCs. The obtained RP of 279 molecules and the
prediction results with MAE of 0.283 are shown in Fig. 6a.
Notably, the molecule with the highest theoretical energy
density in Fig. 6a, highlighted in the red box, is NT. Following
this, NT was selected out for successful application in a LIB
cathode. First, 5,8-dihydroxynaphthalene-1,4-dione (DND) as
a precursor of NT was synthesized (Fig. S11 and S12†). Subse-
quently DND was made for the cathode material (ESI Note 5†).
Aer the rst cycle discharge and charge in LIBs, NT was formed
(Fig. 6b). During the rst cycle of discharge, the discharge
capacity was only 277 mA h g−1 at 0.1 A g−1 (Fig. 6c), which was
close to the theoretical capacity of 282 mA h g−1 of DND. Then,
in the second discharge cycle, the capacity increased to
12040 | J. Mater. Chem. A, 2024, 12, 12034–12042
511 mA h g−1 approaching the theoretical capacity of
570 mA h g−1. This illustrates the successful conversion of the
DND electrode into NT aer the rst charge process. X-ray
photoelectron spectroscopy (XPS) spectra further conrms this
conversion (Fig. S13†). In addition, NT exhibits excellent cycling
performance of 2500 cycles at 1 A g−1, reaching a discharge
voltage of up to 2.5 V. Moreover, compared with other organic
carbonyl cathode materials, NT exhibits a pretty high energy
density and cycle life8,10,31–45 (Fig. 6e, Table S5†). The successful
application of NT in a LIB cathode suggests the viability of our
method in exploring new OEMs.
3 Conclusion

In summary, we have collected one million molecules from
PubChem and aer four rounds of ltration we identied 1524
molecules as potential OEMs. Throughout the screening
process, hierarchical clustering has been introduced for the rst
time, and the reliability of classication has been conrmed by
the t-SNE and cosine matrix analyses. This innovative approach
enables the rapid and large-scale screening of potential OEMs.
Moreover, employing HTCs, the SVR model with high accuracy
in predicting RP has been built. Upon analysing the SVR
This journal is © The Royal Society of Chemistry 2024
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descriptors, double bonds, especially the conjugated double
bonds, signicantly contribute to the RP of OEMs. Aer the
above steps, we have selected the promising molecule NT as the
cathode material of LIBs, achieving an impressive energy
density of ∼1200 W h kg−1 and verifying the good prediction
performance of the SVR model. The approach reported in this
work could efficiently screen and design an extensive array of
organic cathode materials, showcasing the potential of data-
driven method for accelerating the development of advanced
electrode materials.
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