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Organic electrode molecules hold significant potential as the next generation of cathode materials for Li-ion batteries. In this
study, we have introduced a multi-objective active learning framework that leverages Bayesian optimization and non-dominated
sorting genetic algorithms-II. This framework enables the selection of organic molecules characterized by high theoretical
energy density and low gap (LUMO-HOMO) (LUMO, lowest unoccupied molecular orbital; HOMO, highest occupied mole-
cular orbital). Remarkably, after only two cycles of active learning, the determination of coefficient can reach 0.962 for
theoretical energy density and 0.920 for the gap with a modest dataset of 300 molecules, showcasing superior predictive
capabilities. The 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione, selected by non-dominated sorting genetic algorithms-II, has
been successfully applied to Li-ion batteries as cathode materials, demonstrating a high capacity of 288 mAh g−1 and a long cycle
life of 1,000 cycles. This outcome underscores the high reliability of our framework. Furthermore, we have also validated the
universality and transferability of our framework by applying it to two additional databases, the QM9 and OMEAD. When the
training dataset of the model includes at least 500 molecules, the determination of coefficient essentially reaches approximately
0.900 for four targets: gap, reduction potential, LUMO, and HOMO. Therefore, the universal framework in our work provides
innovative insights applicable to other domains to expedite the screening process for target materials.
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With the utilization of fossil fuels, environmental issues have
attracted a great deal of concern [1]. The storage and con-
version of clean energy in the replacement of fossil fuel is
supported by many countries, companies, and institutes in
the world [2,3]. Hence, Li-ion batteries (LIBs) as a kind of
energy storage device for clean energy are widely applied to
mobile electronic devices and electric vehicles [4,5]. How-
ever, conventional LIBs’ cathode materials, such as LiFe-
PO4, LiCoO2, and LiMn2O4, have exposed themselves
disadvantages like low capacity and high cost, which cannot

gradually fulfill the booming demand of society [5,6].
Especially, these inorganic materials mainly originate from
ores rather than renewable resources [7]. Therefore, devel-
oping new cathode materials is extremely urgent [4,8,9].
Organic electrode molecules (OEMs) have been centered on
recently due to their distinctive characteristics [4,5,10].
Firstly, the primary constituents of OEMs are earth-abundant
elements, such as carbon, oxygen, hydrogen, and nitrogen,
which render them readily available [6,7,11]. Secondly, by
manipulating the quantity of active functional groups in
conjunction with other inactive components of the OEMs,
the molecules can be effortlessly designed with high capacity
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and voltage [6,11–13]. In the meantime, the stability of
OEMs should be taken into consideration on the drawing
board. However, currently, most OEMs are explored and
exploited by trial-and-error experiments, making it difficult
to explore more molecules in the enormous chemical space
[14,15].
In recent years, big data combined with machine learning

(ML), regarded as the ‘fourth paradigm of science’ [16],
have played more and more significant roles in chemistry
and material fields [17,18]. In particular, lots of research
about cathode materials [15,19], solid-state electrolytes
[20,21], and other related energy storage and conversion
fields [22,23] combined with ML boomingly emerge. The
active learning (AL), a subfield of ML, has been also applied
into electrocatalysts [24,25], redox flow batteries [26], and
organic synthesis [27] owing to its distinctive merits [28].
Specifically, AL has the capability to acquire as many high-
quality samples as possible by labeling a minimal number of
samples from the unlabeled space [28]. This implies that the
optimal molecules or other materials within the chemical
space can be synthesized or calculated using only a limited
number of experiments and calculations. For example, Rao
et al. [29] constructed an AL framework that was capable of
generating high-entropy alloy chemical space. In every cycle
of AL, they only synthesized three samples recommended by
the AL to obtain those high-entropy alloys with low thermal
expansion coefficients. Lu and co-workers [30] proposed an
AL framework with margin sampling to select two-dimen-
sional ferromagnets with high Curie temperatures. In addi-
tion, Bayesian optimization combined with Gaussian process
regression (GPR) is also a common practice in AL
[25,26,31,32]. Furthermore, the multi-objective active
learning (MOAL) has been adopted to screen organic con-
ductors [32], redox active molecules [26], and molecular
photoswitches [33]. MOAL has the capability to simulta-
neously select multi-property molecules, thus reducing
screening time compared with the sequential step-by-step
screening with multi-property molecules. Nevertheless, a
persistent issue arises when selecting molecules with one
desirable property, which may be at the expense of another
desirable property [27]. This serves as the stumbling blocks
of MOAL.
In the present work, we have developed a MOAL frame-

work to swiftly and automatically identify those multi-
properties OEMs from our created database (OQEMDB)
containing 27463 quinone molecules. The theoretical energy
density (TED) and gap are the two key properties of OEMs in
LIBs. Thus, the selection of OEMs with high TED and low
gaps is the main task of MOAL. Moreover, the MOAL fra-
mework is composed of a machine learning model that
combines convolution neural network with GPR, and Pareto
front that is achieved by non-dominated sorting genetic al-
gorithms-II (NSGA-II) [34]. Furthermore, to gather high-

performance potential OEMs, we have carried out 10 cycles
of MOAL. The 1,100 molecules (including initial 100 mo-
lecules) have been selected and 4,400 tasks have been per-
formed by density functional theory (DFT) calculations. The
2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione (TFDD)
determined by NSGA-II from the top 100 molecules among
the 1,100 candidates has been applied into LIBs as high-
perofrmance cathode materials. The successful im-
plementation of our framework provides new insight to
screen out OEMs or other electrode materials with desig-
nable multi-properties. Importantly, explicit mathematical
formulas for both TED and gap have been sought to further
quantify the structure-property relationship between these
two targets and OEMs.
Quinone molecules have been a lot of traction in the ex-

ploration of new OEMs [35–37]. To dig out as many po-
tential quinone molecules as possible, a chemical space was
designed that involved a random combination of 12 quinone
molecules and 12 functional groups (Figures S1 and S2,
Supporting Information online), and these generated mole-
cules were stored in the form of SMIELS (simplified mole-
cular input line entry system) [38]. More details about the
construction of our database were shown in Note 1 in the
Supporting Information online. It should be mentioned that
the application of a brute-force functional group substitution
method could potentially generate an extensive chemical
space, in which numerous molecules might either be non-
existent or unsuitable for OEMs. According to our previous
chemical experience and knowledge, most OEMs have
symmetrical structures. Hence, serial methods were utilized
to lessen the chemical space while symmetric molecules
were identified (Figure 1a). Initially, the molecule would be
chosen if the atomic numbers of every element within it were
even. Then, these selected molecules underwent the opti-
mization using the MMFF94 [39] method from RDKit to
determine their three-dimensional positions. Nonetheless,
due to the intricate structures, some molecules could not be
optimized efficiently, and were consequently discarded.
Following this, the SYVA [40], a software designed for
calculating point group of molecules, was employed to
screen out the symmetric molecules. Those molecules with
the C1 point group were removed. At last, a database con-
taining 27,463 quinone molecules (OQEMDB) was con-
structed. Moreover, the t-distribution stochastic neighbor
embedding (t-SNE) method was harnessed to visualize the
database. Morgan fingerprints were introduced to represent
these molecules in the course of visualization [41] (Note 2 in
the Supporting Information online). Intriguingly, the theo-
retical capacity (TC) of molecules gradually increases from
lower right to upper left in the visualization space (Figure
1b), and similarly, the relative molecular mass (RMM) gra-
dually increases from down to up (Figure S3).
Our goals were to screen out those molecules with high
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TED as well as low gaps from our constructed database for
LIB’s cathode applications. Notably, the low gap implied fast
intramolecular charge transfer [42]. However, it was im-
practical to adopt high-throughput experiments or calcula-
tions across all molecules in the database. Consequently, ML
was deemed suitable for addressing this issue.
Prior to the development of a machine learning model, it

was imperative to select suitable descriptors that aptly re-
presented organic molecules. In this study, three descriptors
were utilized to accurately depict organic molecules: the
many-body tensor representation (MBTR), atom-centered
symmetry functions (ACSF), and smooth overlap of atomic
orbitals (SOAP). It was convenient to extract these de-
scriptors by the python package DScribe [43] without te-
dious manual selection [19,26,44,45]. Specifically, the
MBTR describes the interaction of each element in one
molecule, while the SOAP and ACSF record the sum of the
local environment information of every atom in one mole-
cule. For example, the benzoquinone (BQ), 1,4-naphtho-
quinone (NQ), and 9,10-anthraquinone (AQ) are similar to
each other. Thus, their representations from the three de-
scriptors look alike (Figure 2a), but the intensity of peaks is
slightly different according to the corresponding molecules.
More details can be found in Note 3, Table S1 (Supporting
Information online), and the reference [43].
Subsequently, an AL model (GNGPR) using GoogLeNet

neural network (Note 4, Tables S2 and S3) was combined
with GPR (Figure 2b, Note 4, Eq. S1 in the Supporting In-
formation online) to screen out those OEMs with good per-
formance. The basic constructions of BNConv2d and
Inception are shown in Figure S4. Notably, in the training
process of GNGPR, it was divided into two stages. First, the
GoogLeNet underwent 150 cycles of training. After 100

cycles, the parameters of GoogLeNet model were reserved at
the cycle that yielded the lowest value of the loss function.
Second, the output from the penultimate layer of the reserved
GoogLeNet model would serve as the input for GPR model,
and followingly, the predicted results were obtained via
training the GPR model. Additionally, 100 molecules were
selected randomly as the initial training dataset for GNGPR
model (Figure S5). The TED (Eq. S5) is equal to the RP
(Note 5, Eqs. S2 and S3) multiplied by the TC (Eq. S4), and
the gap is equal to the lowest unoccupied molecular orbital
(LUMO) minus highest occupied molecular orbital
(HOMO). It is worthy of mentioning that the RP usually
serves as the target of OEMs in previous reports [14,15,45].
Here, we have replaced the RP with TED, attributing to the
availability of TC to directly evaluate the energy density of
LIBs. However, it is still necessary that the RP should be
obtained through four states of molecules by DFT calcula-
tions (Figure S6).
The determination of coefficient (R2) was utilized to assess

the efficacy of GNGPR model for TED and gap. In the
meantime, the multi-objective merit of our proposed model
was also further displayed by its training with RP. Through
five-fold cross-validation, the R2 of gap, TED, and RP model
based on the MBTR descriptor are found to be 0.790±0.091,
0.800±0.175, and 0.850±0.093, respectively (Figure 2c). In
comparison, the R2 values for the GPR model predicting all
three targets are consistently below 0.5. However, the R2 of
the GoogLeNet model, which only predicts the RP, exceeds
0.6. Notably, it is below 0 observed for ACSF when the gap
of the initial dataset has been predicted by both the GPR and
GoogLeNet models (Figure S7a). Similarly, this trend is also
observed for SOAP (Figure S7b). Nevertheless, the GNGPR
still behaves well. The aforementioned data indicates that the
GNGPR model exhibits superior predictive accuracy com-
pared with the other two models. Furthermore, compared
with ACSF and SOAP, the model employing MBTR on the
three targets demonstrates greater robustness and improved
performance (Figure 2d). As a result, the GNGPR model
combined with the MBTR descriptor is better competent for
MOAL.
Multi-objective Bayesian optimization framework

(MOBO), composed of Bayesian optimization (Note 6) and
NSGA-II, was harnessed to build the MOAL loop (Figure
3a). Expected improvement (EI; Eqs. S6 and S7) served as
the acquisition function, which is the metric of good candi-
dates. In each iteration cycle, the EI of all molecules except
the previously chosen molecules would be calculated by
individual GNGPR for TED and gap. Then, 100 molecules
would be chosen based on the Pareto front achieved by
NSGA-II and calculated by DFT in the next cycle. The da-
taset used for training GNGPR would also be updated au-
tomatically. Particularly, the training and test sets were
always split into an 8:2 ratio during the MOAL loop.

Figure 1 (Color online) The creation and visualization of OQEMDB.
(a) Schematic of the building process of quinone database. (b) Visualization
of the quinone database by t-SNE. The data points are colored according to
the theoretical capacity.
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Moreover, Gen1 denoted the molecules generated from the
initial 100 molecules (Initial). Similarly, Gen2 represented
the molecules generated from the updated dataset, including
both Gen1 and Initial. Furthermore, from Figure 3b, c, the R2

scores keep increasing over time, which suggests that the
MOAL can optimize itself during the training process. The
R2 values of the initial test set are only 0.703 for TED (Figure
3d) and 0.821 for gap (Figure 3e). Nonetheless, at Gen10, the
GNGPR model can achieve high scores of 0.985 for TED
(Figure 3f) and 0.942 for gap (Figure 3g). Additionally, the
training results of GoogLeNet and GNGPR during the
MOAL are also shown in Figures S8–S13. The loss values
almost remain unchanged after 50 epochs (Figures S8 and
S9), indicating that 150 epochs of training for GoogLeNet
are adequate. Concurrently, the performance of GoogLeNet
for TED and the gap continues to be improved during the
MOAL (Figures S10 and S11). Moreover, the top 100 mo-
lecules for TED and gap are immediately updated every loop
(Figure 3h). Importantly, since Gen6, both TED and gap
have maintained their violin-like shape with minimal al-
terations, indicating that most high-performance molecules
have been selected by our MOAL. Consequently, the MOAL
could be terminated after Gen10. Table S4 displays the top
100 molecules selected by NSGA-II, which both have high
TED and low gap. Considering the molecular synthesiz-
ability and stability, the TFDD has been selected for further
experimental verification. When implemented to the cathode
of LIBs (Note 7), it achieves a capacity of 288 mAh g−1 at

0.1 A g−1 (Figure 3i) and a cycle lifetime of 1,000 cycles at
1 A g−1 (Figure S14), suggesting the good ability of experi-
mental guidance from the MOAL.
Although the MOAL model displays excellent predicting

ability, a significant limitation of the neural network models
is their lack of interpretability, particularly in applications
where the transparency of decision-making is a crucial re-
quirement. To this end, a two-dimensional plane constituted
by the output vectors originating from the previous layer of
linear layer of GoogLeNet (Figure 2b) using the t-SNE has
been constructed. Figure S15 illustrates the training space of
TED and the gap. For TED, the data points gradually in-
crease from the upper left to the lower right. Meanwhile, the
molecules with higher TED tend to gather together. The gap
is also in a similar status. Particularly, even in the prediction
space of TED and gap (Figure 4a, b), the 1,100 molecules
also showcase the similar distribution to the training space,
demonstrating that the MOAL can achieve high accuracy to
search those molecules with higher TED or lower gap.
In addition, the MOAL is capable of extracting chemical

information from other insights, such as the number of rings

Figure 2 (Color online) (a) The representations of BQ, NQ, and AQ
based on the three descriptors, MBTR, SOAP, and ACSF. (b) The three
models of GPR, GoogLeNet, and GNGPR. (c) The evaluations of GPR,
GoogLeNet, and GNGPR with MBTR. (d) The evaluations of GNGPR
with three descriptors, ACSF, SOAP, and MBTR. Figure 3 (Color online) The results of MOAL. (a) Schematic of the

MOAL process. The R2 of each cycle in the MOAL for TED (b) and gap
(c). The predicted results of the initial training dataset for TED (d) and gap
(e). The predicted results of the training dataset of Gen10 for TED (f) and
gap (g). (h) The distribution of the top 100 molecules in terms of TED and
gap after every cycle of MOAL. The white point is the median, and the
black rectangle represents the quarter to three quarters for TED and gap
distribution in the violin diagram. (i) The full charge and discharge curves
of TFDD at 0.1 A g−1.
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and functional groups. For TED, it is evident that the regions
with varying numbers of rings in the prediction space exhibit
distinct characteristics (Figure 4c). It primarily pertains to
the TC (Eq. S4), wherein molecules possessing three rings
exhibit the lowest TC (Table S5). Consequently, these mo-
lecules are situated in the leftmost low-TED region. Con-
versely, the pyrene-4,5,9,10-tetraone and benzoquinone
derivatives are positioned in the bottom right high-TED re-
gion. The distinct distributions clearly demonstrate that the
MAOL can discern the key factors influencing TED. Spe-
cifically, the distribution of TED across various rings in the
MOAL database serves to validate the authenticity of the
prediction space (Figure 4e). However, it is unfortunate that
no discernible pattern exists for the distribution of molecules
within the gap prediction space based on the number of rings
(Figure S16). Furthermore, the functional groups are cate-
gorized into electron-withdrawing groups (–CN, –COOH,
–CF3, –NO2, –F, –Cl, and –SO3H) and electron-donating
groups (–CH3, –NH2, –OH, –OCH3, and –SH). Following
this classification, the molecules are further classified into
three categories: those exclusively containing electron-
withdrawing groups, those exclusively containing electron-
donating groups, and those containing both types of groups
(mixing groups) (Figure 4d and Figure S17). In particular, in
the prediction space of gap, it is obvious that the electron-
withdrawing groups are situated on the upper left, while the

electron-donating groups are located on the lower right. This
suggests that the electron-withdrawing groups could increase
the gap, whereas the electron-donating groups reduce the
gap. Meanwhile, the gap of those molecules containing
–NH2, –OH, and –SH is indeed lower than that of those
molecules containing –F, –CF3, and –SO3H (Figure 4f).
Consequently, the visualization through the t-SNE under-
scores the robust learning capability of our MOAL in relation
to various targets.
As described above, the GNGPR model has played a sig-

nificant role in our work. Apart from the quinone OEMs, we
anticipate that this model can also be competent for other
types of OEMs or other systems. Therefore, another two
databases were chosen to test the universality of GNGPR.
One of the two databases was created by Carvalho et al. [15],
which was composed of more than 26,000 molecules (re-
ferred OMEAD) and their physical and chemical properties,
such as HOMO, LUMO, RP, and oxidation potential. An-
other database was the QM9 dataset which contained more
than 133 thousand molecules with molecular geometric,
energetic, electronic, and thermodynamic properties. For
OMEAD, the model was trained based on the gap, HOMO,
LUMO, and RP with different dataset sizes (100, 500, 1,000,
3,000, and 5,000) using 5-fold cross validation (Figure 5a).
For QM9, a similar processing procedure to OMEAD was
followed, except no RP dataset in the QM9 (Figure 5b).
According to the training outcomes, when the training size is
set at 100, only for gap, the R2 of test set can reach the value
of 0.839±0.158 (OMEAD) and 0.909±0.105 (QM9). The R2

of other targets falls below 0.8, with the exception of LUMO
(QM9). However, when the training size is increased to 500,
all models exhibit satisfactory performance, most of which
surpass 0.9, except for HOMO. From 100 to 1,000 mole-
cules, the improvement of GNGPR for all the targets in both
databases is similar to our MOAL process, meaning that our
model is universal and worth popularizing. Conceivably, for
1,000 to 5,000 molecules, while there may be a slight in-
crease in model performance, it is not significant. Specifi-
cally, Figure 5c–e and Figure S18 present the predicted
outcomes of QM9 and OMEAD, respectively, with a training
size of 4,000 and a test size of 1,000. The R2 scores for all
targets, excluding HOMO, exceed 0.95. However, the R2

scores for the HOMO model stand at 0.949 for QM9 and
0.925 for OMEAD, thereby demonstrating the robust per-
formance of GNGPR.
While the black-box model of GNGPR is adept at learning

essential chemical information for molecules and possesses
excellent predictive ability, it falls short in defining or
quantifying the influencing factors of targets. Herein, the
sure-independence-screening-and-sparsifying-operator
(SISSO) algorithm [46] was utilized to quantify both phy-
sical and chemical descriptors to create a formula to fit the
targets. Accordingly, a total of 93 descriptors were meticu-

Figure 4 (Color online) The visualization results of MOAL. The visua-
lization of the prediction space from GoogLeNet for TED (a) and gap
(b) by t-SNE. The data points of the MOAL colored by TED and gap,
respectively. (c) The data points colored with their number of rings in the
prediction space of TED. (d) The data points colored with the functional
group types (electron-donating, electron-withdrawing, and mixing groups)
in the prediction space of gap. (e) The distribution of the number of rings
according to the TED of MOAL. (f) The distribution of functional groups
according to the gap of MOAL.
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lously selected and presented in Table S6, which were
composed of the covalent radius and Pauli electronegative of
atoms, molecular volume, type of bonds, functional groups,
BCUT2D, and SlogP. These descriptors could function as the
input for the SISSO algorithm, resulting in the generation of
three distinct SISSO-descriptors (x1, x2, x3) for gap (Figure
6a) and TED (Figure 6b), respectively. Linear regression
models were employed to adjust the three SISSO-descriptors
to fitting the gap and TED. The parameters ‘a’, ‘b’, ‘c’, and
‘d’ are detailed in Tables S7 and S8.
As for the gap, three linear regression models were built,

and they were ySISSO=ax1+d, ySISSO=ax1+bx2+d, and
ySISSO=ax1+bx2+cx3+d. Then the predicted results of MOAL
are displayed in Figure 6c–e and Table S9. It is observed that
as the number of SISSO-descriptors increases, there is a
corresponding decrease in the value of the root mean square
error (RMSE). The descriptor x1 is associated with the
electron-donating groups and unsaturated bonds. Compared
with x1, x2 and x3 augment the predictive accuracy of gap in
low and high ranges. This enhancement can be attributed to
the supplement of electron-withdrawing groups like Sub188
(Sub274–Sub307) and the global properties like qed, SVSA1.
In addition, the three SISSO-descriptors of TED also de-
monstrate superior predictive performance (Figure 6f–h).
Specifically, x1 is analogous to Eq. S5, wherein the formula
Chi0n/(ABond*RAA) acts as the RP. This illustrates that the
SISSO algorithm can discover formula with physical and
chemical relevance. Furthermore, x2 and x3 enhance the
correction of TED in terms of the functional groups, atomic
charge, and molecular polarity, respectively. Ultimately, the
SISSO algorithm is utilized to fit the predicted values of
TED and gap of all molecules in OQEMDB by MOAL
(Figure S19). Inconceivably, the smaller RMSE of TED
(72.061 Wh kg−1) and gap (0.209 eV) emerges, illustrating
the excellent robustness of SISSO. Besides, the SISSO still
remains good prediction performance with small size of

molecules, such as 50, 100 and 500 molecules (Figure S20),
while GNGPR model reaching stable predicting level needs
more than or equal to 300 molecules (Figure 3b, c). In brief,
the explicit mathematical formula has been sought to further
quantify the structure-property relationship of gap and TED
and facilitate the analysis of gap and TED.
In summary, we have proposed a MOAL framework to

rapidly and accurately search multi-properties OEMs for
LIBs. The MOAL framework constructed based on the
neural network and GPR model could integrate the NSGA-II
to harmonize the exploration-exploitation tradeoff in multi-
objective optimizations. The application of TFDD selected
by our MOAL into LIBs exhibits a high energy density of
774 Wh kg−1 and a long cycle life of 1,000 cycles. Conse-
quently, this framework demonstrates the outstanding cap-
ability of MOAL to assist the experimental synthesis of high-
performance OEMs and accelerate the discovery of new
materials with requisite properties for batteries. Moreover, in
the field of materials science, it frequently occurs that merely
small datasets are accessible for a specific task related to the
material discovery. However, MOAL can achieve high scores
of 0.920 for gap and 0.962 for TED with only 300 molecules,
thus offering an approach to coping with small datasets in
material science. Importantly, another advantage is that our
framework is universal and transferable by the validation of
two additional databases. Last but not the least, we have also
employed the SISSO algorithm as assistance to accurately
establish predictive and physically interpretable formulas
that link the functional groups and molecular charge de-
scriptors with the TED and gap. This approach can contribute
to the guidance of designing high-performance OEMs.

Figure 5 (Color online) The training results of GNGPR for different
targets based on OMEAD (a) and QM9 (b) databases by 5-fold cross-
validation under different training sizes. The predicted results of gap (c),
HOMO (d), LUMO (e) for QM9 using GNGPR. The training set and test
set are split into 4:1.

Figure 6 (Color online) The descriptors and analysis of SISSO. The three
descriptors generated by SISSO for gap (a) and TED (b). The predicted
results of SISSO formula with one (c), two (d), and three (e) descriptors for
the gap of MOAL. The predicted results of SISSO formula with one (f),
two (g), and three (h) descriptors for TED of MOAL.
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